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Development and Characterization of SiC/SiC Composites       
for 3000°F Hypersonic Vehicle Applications 
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Outline

• SiC/SiC Composites

- Applications and materials selection considerations

- NASA development and characterization of CVI, PIP, and Hybrid SiC/SiC 
CMCs (ceramic matrix composites) for reusable high speed (hypersonic)        
vehicle applications

• Coordination of SiC/SiC development efforts with AFRL (WPAFB)

• Summary 
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Stress-Rupture Behavior of Different High-Performance 
SiC Fibers at 1400°C (2552°F) in Air

Justification for use of Sylramic-iBN SiC Fibers in High-T SiC/SiC CMCs:  Reactive               
heat treatment forms a thin protective in-situ BN surface coating and provides the best             
high-temperature stress-rupture resistance of any SiC fiber (reported in 2001, H. M. Yun).

0.01 0.1 1 10 100 1,000
50

100

200

300

500

1,000
R

up
tu

re
 S

tr
en

gt
h,

 M
Pa

10

20

50

100

R
upture Strength, ksi

Stress-Rupture Time,  hrs

SylramicTM
SylramicTM – iBN

Hi-Nic.S

Tyranno SA(1,2)



October 7-9, 2008    FAP Annual Meeting - Hypersonics Project 6

Cracks Act as Oxygen Diffusion Paths in C/SiC

Fracture surface showing oxidation of 
crack bridging fibers at an elevated 
temperature in air.

Oxidation Along Crack
Oxidation at Edge

Oxidized Fiber Regions
Matrix Cracks

Polished cross-section showing oxidation of 
carbon fibers occurring preferentially along 
microcracks. 1000°C/25 ksi/air. (scale bar 
equals 0.1 mm)                 (Source: M. C. Halbig)
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Chemical Vapor Infiltration (CVI) CMC Manufacturing Process

CMC properties result from the 
selection of constituents and the 
processing approach. 

CMC Processing Variables Include:
• Fiber
• Fiber architecture
• Fiber loading (vol %)
• Fiber heat treatment
• Preform and CMC annealing
• Interphase (fiber coating)
• SiC matrix infiltration approach 

(CVI, melt infiltration (MI), polymer
impregnation pyrolysis (PIP) or a 
hybrid approach) 

Fiber
(tow)

Stacked Fabric/
Preform

CVI Interphase
Deposition

CVI SiC Matrix
Deposition

CVI C/SiC or SiC/SiC
Composite

Weaving/Braiding

Tooling

Reactor

Reactor



October 7-9, 2008    FAP Annual Meeting - Hypersonics Project 8

Variable distribution of porosity throughout specimens, which is typical for CVI CMCs

Sylramic-iBN SiC Fiber-Reinforced CVI SiC CMC

Average specimen thickness: 2.1 mm            Average specimen density ~ 2.6 g/cc

Coated fiber tow
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Sylramic-iBN SiC Fiber-Reinforced CVI SiC CMC

Uniform BN interphase observed in center of specimen
Center of specimen, center of fiber tow

Porosity

CVI SiC
BN Interphase

(0.5 μm thick)

Sylramic-iBN 
SiC Fiber
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Post processing method developed for improving creep resistance of CVI SiC/SiC                
CMCs.  Residual strength at 1450°C of post processed sample was 243 MPa (35 ksi).  

Creep-Rupture of As-Received and Heat Treated              
CVI SiC/SiC in Air at 1450°C (2642°F), 69 MPa (10 ksi)
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ARMD FA Program: Hypersonics Project: M&S 
Durable Material Systems

Objectives
• Advance fundamental 

understanding of key 
hypersonic materials.

• Improve the high 
temperature performance 
of enabling hypersonic 
materials.

• Develop validated physics- 
based response models for 
reliable design.
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ARMD FA Program: Hypersonics Project: M&S 
3000°F Composites*

Task Objective:
Develop, demonstrate, characterize, and model composite material 
systems capable of operation at temperatures of at least 3000°F              
under a tensile load of at least 10 ksi, for 100 hrs in an oxidizing 
environment**.
** initial tensile creep testing environment will be air

* Activity POC: Doug Kiser (GRC, 216-433-3247)
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ARMD FA Program: Hypersonics Project: M&S 
3000°F Composites*

* Activity POC: Doug Kiser (GRC, 216-433-3247)

Technical Challenge:  
Extend performance capability >2700ºF through material processing 
modifications, varying constituents, and heat treatment cycles for 
enhanced creep resistance and thermal conductivity.

Collect Data (Establish Baseline Properties)
— Analysis and Understanding

— Model Behavior
— Improve Material and/or Structure (as needed) 

— Document Results Throughout Process



October 7-9, 2008    FAP Annual Meeting - Hypersonics Project 14

SiC/SiC Composites Currently Being Evaluated 
(3000°F Composites) 

Characterization of Composite Materials
• Density, microstructure (before and after testing)

• NDE (with LaRC)

• RT fast fracture (FF) tensile testing with AE (acoustic emission)

• High temperature fast fracture tensile testing

• From FF: Modulus, proportional limit, ultimate tensile stress, ultimate strain

• Stress-rupture (creep) at high temperature (2640 - 3000°F) under various loads

• ILT, thermal conductivity, ILS

Mat’l Description  Fiber
         

Architecture Interface  Matrix Vendor Notes
2D, 20 epi 

8 plies

2D, 20 epi 
8 plies

2D, 20 epi 
10 plies

2D, 10 epi DBLT**
10 plies

**  Double Tow *   with particulate filler

PIP SiNC/SiC* COIC Sealed edges

4 PIP SiC/SiC Sylramic-iBN Mod1            PIP SiNC/SiC* COIC Sealed edges

3 PIP SiC/SiC Sylramic-iBN Mod1            

CVI SiC GE Sealed edges

2
Annealed         

CVI SiC/SiC Sylramic-iBN BN (Si doped) CVI SiC GE
Sealed edges, 

Annealed

1 CVI SiC/SiC Sylramic-iBN BN (Si doped)
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SiC/SiC Composites: Tensile Testing 
(3000°F Composites) 

• Furnace is open to show how extensometers (for monitoring strain) touch sample.  
• SiC extensometer probe rods for high temperature creep rupture tests.

Tensile Testing Set-up Utilized for FF and Creep Rupture Testing  

ExtensometersSample
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SiC/SiC Composites: Fast Fracture Tensile Testing 
(3000°F Composites) 

CVI SiC/SiC PIP SiC/SiC
Ave. UTS (ksi) Ave. UTS (ksi)

60.2 
42.5
35.4 

Room Temperature
2642°F (1450°C)
2822°F (1550°C)

58.7
41.4
33.7

Fast Fracture  Tensile Test Results:  
Ultimate Tensile Strength (UTS)

Temperature

At each temperature:
UTS of CVI and PIP SiC/SiC are roughly equivalent (within 5%)

*

* Annealed
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Creep Rupture of SiC/SiC Composites
(3000°F Composites)

Creep (Stress-Oxidation) Rupture Testing Approach
1) Heat to test temperature in air
2) 10 second ramp to hold stress
3) Hold for 100 hr run-out
4) Release load, but maintain hold temperature
5) Perform residual strength testing at elevated temperature

Creep curve showing deformation
occurring during test at 2822°F
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Creep Rupture of CVI SiC/SiC Composites
(3000°F Composites)

Results
Uncoated Samples

Three repeat samples survived 
2642°F/10 ksi

 

for 100 hr run-out
(94% strength retention)

Three repeat samples survived 
2822°F/5 ksi

 

for 100 hr run-out
(69% strength retention)

Three repeat samples failed at 
2822°F/10 ksi

 

before 100 hr  run-

 
out (ave. life:  15.5 hr)

CBS Coated Samples
Single specimen survived 
2822°F/10 ksi

 

for 100 hr runout 
(atypical).  Two others failed at 
ave. life: 10 hrs.
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Sylramic-iBN SiC Fiber-Reinforced PIP SiC CMC

Matrix Infiltration X

Matrix Infiltration Y 0° Fiber Tow
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Sylramic-iBN SiC Fiber-Reinforced PIP SiC CMC

Matrix Infiltration X

Matrix Infiltration Y BN Interphase
(0.4 μm thick)

Sylramic-iBN 
SiC Fiber

2822°F /10 ksi: Average life of the PIP samples was 48.5 hrs 
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1400oC IN AIR
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ARMD FA Program: Hypersonics Project: M&S 
(3000°F Composites)

Material/Test Specimen Modifications (FY’09):
• Investigate effect of SOA coatings on PIP and CVI SiC/SiC durability. 
• Examine effect of utilizing Super Sylramic-iBN SiC fibers and an alternate 

interphase in PIP and CVI SiC/SiC CMCs.
• Test tensile specimens with broader gage widths to determine if this affects 

observed durability (in creep rupture tests). 
• Evaluate Hybrid SiC/SiC (CVI followed by PIP) CMCs.

EBC

CMC
Example of environmental barrier coating
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Joint NASA/AFRL Roadmap for SiC/SiC Composites

• NASA Management visited Air Force Research Laboratory (AFRL) 
to discuss collaboration opportunities.  

• Several technology areas were identified for collaboration. One       
key area was development of CMC materials/components with 
temperature capability of 2700°F (or greater).  

• Both organizations agreed to develop a joint roadmap in this 
technology area and to identify potential interdependencies. 

• The initial NASA/AFRL focus is on SiC/SiC CMCs.



October 7-9, 2008    FAP Annual Meeting - Hypersonics Project 23

• Improving the durability of SiC/SiC CMCs at T>1400°C via alternate 
processing (fabrication and selection of constituents) approaches is being 
pursued in the NASA ARMD FA Program Hypersonics Project (M&S: 
3000°F Composites Task).

• Thus far, “Full” CVI SiC/SiC samples have achieved 100 hrs life (run-out)      
in stress-rupture testing under the following conditions: 1450°C/69 MPa,      
and 1550°C/34 MPa.  Good strength retention was observed.

• The influence of using tensile specimens with broader gage widths and 
specimens having various protective surface coatings (to prevent or reduce  
oxidation effects) and/or will be evaluated.

• A significant amount of high temperature SiC/SiC data will be generated 
during the next year.  Material performance will be correlated with 
microstructure/constituents.

• NASA is developing a joint SiC/SiC Roadmap with AFRL.

Summary
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Conclusion

“………..for the dream of yesterday
is the hope of today 

and the reality of tomorrow.”
Dr. Robert H. Goddard

US physicist & pioneer rocket engineer (1882 - 1945)

• With continued development by NASA, DoD, and Industry,   
SiC/SiC CMC aerospace components can become a reality. 

http://www.nasa.gov/centers/goddard/about/dr_goddard.html
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Thermal Conductivity of CVI SiC/SiC Composites

Heat treatment of CVI SiC/SiC composites improves the thermal conductivity;
~ 90% and 25% improvement in 25 and 1500°C transverse (through-thickness)                        
thermal conductivity, respectively. 
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(Source: R. T. Bhatt)
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CMC Materials Selection Considerations

SiC/SiC Advantages wrt C/SiC: 

• In contrast to C/SiC, matrix cracks and cracks within the fiber tows are not 
present in as-fabricated CVI and MI SiC/SiC CMCs.  

• Near-stoichiometric SiC fibers are more isotropic in properties and significantly 
more oxidation resistant. 

• BN-based interphases (fiber coatings) for SiC/SiC composites are more 
oxidatively stable than carbon interphases for C/SiC composites, but they can   
still be degraded by oxygen and water vapor. 



October 7-9, 2008    FAP Annual Meeting - Hypersonics Project 27

CMC Materials Selection Considerations

SiC/SiC Disadvantages wrt C/SiC:

• Density of SiC/SiC is higher than that of C/SiC (2.6 g/cc vs. 2.1 g/cc).
• SiC fibers are more susceptible to creep (type of SiC fiber will determine           

the creep resistance).  However, the use-temperature-limit of SiC fibers         
should depend on the stress state in the component (e.g., hot surface in 
compression, etc.). 

• Fiber cost and availability.
• Ability to handle and weave stoichiometric SiC fiber imposes restrictions                

on fiber architecture.
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