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Motivation

Air-breathing hypersonic vehicles represent next critical step toward achieving
- reliable affordable access to space and global reach vehicles

e Rocket-based systems must carry oxygen - more expensive (limits payload), less reliable

Airbreathing ... need not carry oxygen - less expensive (reduce TOGW), more reliable,
offers increased I, and lower cost-per-pound-to-orbit

e NASA Emphasis: two-stage-to-orbit (TSTO) concepts; e.g. NASA reference vehicle (RV)

Dr. J. Robinson, et. al.

e [ssue: Significant aero-thermo-elastic-propulsion interactions and uncertainty

— requires control-relevant integrated multidisciplinary (IM) MAD approach

NOTES: 1. To suitably limit scope, we focus on scramjet-powered vehicles (Mach 5-16)
and a single vehicle

2. Final IM-MAD approach will be applicable to TSTO



STATE OF THE ART



State of the Art: Pro

¢ 1986-1993 - NASP X-30: $3B SSTO effort involving DOD and NASA; No flights
e 1996 - Hyper-X Program: Initiated to advance hypersonic air-breathing propulsion

e 2002 - Scramjet
Supersonic combustion of scramjet in flight first demonstrated July 30, 2002
by Univ of Queensland Centre for Hypersonics (HyShot program)

¢ 2004 - X-43A Flights
Hyper-X program culminated with historic (March 27, November 16)
2004 Mach 7, 10 X-43A scramjet-powered flights (McClinton, 2007)
...ushered in era of airbreathing hypersonic flight

e Hypersonic International Flight Research Experimentation (HIFIRE)
Ongoing collaboration between NASA, AFRL, Australian Defence Science and Technol-
ogy Organization (DSTO), Boeing Phantom Works, University of Queensland
Will involve 10 flights over 5 years

e X-51A Scramjet Engine Demonstrator - WaveRider (SED-WR)
AFRL, Boeing, Pratt & Whitney, Rocketdyne
single HC-fueled scramjet, fixed-geometry inlet, air-launched expendable missile, to be
launched by B-52 at ~35Kft, accelerated by solid-propellant rocket motor (MGM-140)
to Mach 4.5 scramjet ignition speed, target speed: ~Mach 6-7, first flight: ~ Aug 2009



Fundamental Issues and

Aero-Thermo Interactions (Anderson, 2006)

e Drag can be reduced by making body more slender (increased fineness);
this increases structural heating, reduces flexible mode frequencies
...can degrade control system performance...may cause instability!
...may require suitable (high fidelity) models for active modal control

e Hypersonic vehicle design is heat-driven, not drag-driven
Reason: within hypersonic regime (M > 5) heating varies as V?3; drag as V?

Scramjet Propulsion (Heiser & Pratt, 1994)

e Airbreathing systems need not carry oxidizer - significantly reduces TOGW

— 1 . Wiocket Waz’rplane ~
for given payload Wayi0ad: i 25 >> Weions 6.5 (4% vs 15.4%)

— offers potential for significantly (vis-a-vis rockets)

i : ) def T l
- increased specific impulse [y, = 77—
propellant

(I, for H >> I, for HC fuels = Much higher Mach numbers for H - larger volume)
- lower cost-per-pound-to-orbit (currently $10K/Ib for rocket based systems)




Fundamental Issues and

me - “Engineframe”
e Entire underbelly part of flowpath - long forebody provides compression lift, mass capture
e Will fly at highest allowable ¢ (structure permitting) to maximize mass capture
e Aft body expansion nozzle recovers thrust
e May require tight AOA control for proper operation (particularly at off-design conditions)
e Aft situated c.g. results in instability - requires minimum BW to stabilize
Trajectories within Airbreathing Corridor (Heiser & Pratt, 1994)
e About 30kft wide (vertically); dynamic pressure: g € [500, 2000] psf

— lower bd dictated by available lifting area; upper bd by structural limits
— At Mach 16, lower bd requires flight below 150kft

e Need for Flight Path Angle (FPA) Control
— Assume corridor-centered flight at Mach 10. If FPA deviates by ~ 2.9° for 30 sec,
vehicle will leave corridor! (Static calculation; doesn’t capture dynamical issues!)
— Can be disastrous - particularly in presence of uncertain low-frequency flexible modes

— Issue: RHP zero (elevator to FPA) may limit FPA BW...may require additional control
surface to follow rapid FPA commands; e.g. a canard (beware severe thermal issues)



Prior and Ongoing

e 1994, Chavez-Schmidt (Arizona State University)

— 3DOF longitudinal (plus flexing) model
— simple scramjet engine
isentropic diffuser, internal-external nozzles, 1D Rayleigh flow combustor

thermal choking (unity combustor exit Mach)
convenient plume assumption

— FEM based structural model (based on similar full scale vehicle)
e 2003-2008, Mirmirani, Colgren, Keshmiri, et. al.

— engineering and CFD methods, 6DOF, winged cone
e 2004-2008, Bolender, Doman, Oppenheimer, et. al.

— builds on 1994 Chavez-Schmidt model (overview given below)
e 2008, VSI-Control3D; Univ. Michigan-OSU

— Two Ongoing NASA (collaborative) Modeling NRAs
— engineering and CFD methods, 6DOF
— general vehicle configurations; e.g. NASA RV, etc.



SAMPLE ENGINEERING MODEL

Bolender, Doman, Oppenheimer
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e 3DOF longitudinal 4 structual (Bolender, Doman, Oppenheimer, et. al, 2005-2008)
e Model components

— inviscid compressible oblique-shock and Prandtl-Meyer expansion theory
— unsteady effects: linear piston theory

— viscous drag effects: Eckerts temperature reference method (turbulent)
— structural: assumed modes method (free-free beam)

— propulsion: 1994 Chavez, Schmidt

— 4 possible controls - elevator, fuel equivalence ratio (FER), diffuser area ratio, canard
e Propulsion improvement: GNC2008 Torrez, Driscoll, Bolender, Doman, Oppenheimer.

e For this paper, 2 controls (elevator, FER) model, diffuser area ratio = 1, canard removed



e Where can vehicle be trimmed (altitude, Mach)?...focus on level-flight
e How do trim properties change over trimmable region?

e How do dynamic properties change over trimmable region”

— poles, zeros, right half plane zero-to-pole ratio
— frequency response, control coupling

e What control design tradeoffs do we expect?

— closed loop bandwidth vs. reference command magnitude

—robustness with respect to uncertain flexible dynamics

e How do nonlinear issues impact control design tradeofls?



Contributions of

Model Used: Bolender, Doman, Oppenheimer, et. al. (3 DOF + flexing) longitudinal model (2004-2008)

Publications

“Modeling & Control of Scramjet-Powered Hypersonic Vehicles: Challenges, Trends, & Tradeoffs,” Published and presented
at AIAA GNC Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21, 2008

“Constraint Enforcement for Scramjet-Powered Hypersonic Vehicles with Significant Aero-Elastic-Propulsion Interactions,”
Submitted for publication to American Control Conference, St. Louis, Missouri, June 10-12, 2009

Trim (Static) Properties

e Trimmable Region: ~Mach 5-12, 70-115 kft
(subset of airbreathing corridor, Mach 5-16, 70-120 kft, g € [500, 2000]psf [Heiser and Pratt,1993])

e Show importance of FER Margin

FERM ® min(Thermal Choking FER,1) — TrimFER

and how it depends on mach, altitude, flow turning angle (AOA+forebody deflection).
FERMpe decreases with decreasing Mach, increasing altitude, increasing FTA (AOA+forebody deflection).
FERDM,t, decreases with increasing Mach, increasing altitude (independent FTA).

Dynamic Properties
e Pitch-up instability due to forward cp (long forebody compression ramp) and rear shifted cg.
e Requires minimum bandwidth (BW) for stabilization

— More unstable at lower altitudes and higher Machs

— Instability (and poles) invariant along constant dynamic pressure profiles



Contributions of

Dynamic Properties

e Right half plane (non-minimum phase) zero associated with elevator-FPA map; vehicle initially loses altitude prior to
climbing when elevator is deflected upwards

e Limits maximum achievable (FPA tracking) BW

— RHP zero decreases with increasing altitude and decreasing Mach (like RHP pole)
— RHP zero monotonically (albeit slightly) along constant dynamic pressure profiles

Control Design Tradeoffs (LQR)

e While state feedback can be used to eliminate minimum BW constraint at error, acceptable command following and
disturbance attenuation requirements require a minimum BW (at error); also, still require minimum BW at controls

e FPA BW limited by RHP zero (inverse response) effects and flexible dynamics

— Elevator+FER allows for decrease in FPA settling time by 3% (5.15 sec to 5.0 sec)
— Elevator+canard (no FER) allows for 23% decrease (5.15 sec to 3.97 sec)...but canard may burn off!

e FPA robustness with respect to uncertainty in flexibility

— Elevator alone allows for 11.2% decrease in flexility (EI) before instability
— Elevator+FER allows for 17.1% decrease in flexibility (52% improvement)
— Elevator+FER+canard allows for 19.5% decrease of flexibility

Nonlinear Issues
e Methods Used: LQR, Generalized Predictive Control
e FER Margin limits controller BW and/or reference command magnitudes (mainly velocity; FPA to much lesser extant)
e Elevator saturation can induce instability for large controller BW /reference FPA command magnitudes

— constraint enforcement methodologies needed to ensure stability and best possible tracking



TRIMMABLE REGION AND STATIC TRIM
PROPERTIES
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Figure 1: Trimmable Region: Level Flight, Unsteady-Viscous Flow, 2 Control Flexible Vehicle
e Airbreathing corridor: g € [500,2000] psf [Heiser and Pratt, 1993]
e Trimmable region - subset of airbreathing corridor (approx Mach 5-12, 70-115 kft)
e Structual Contsraint: § = 20006?—? (not absolute!)
— Nominal flight condition: Mach 8, 85 kft, § = 2076 psf, (to facilitate comparison with prior research)

e FER Constraints:

— FER = 1, (model does not capture thrust reduction for FER > 1)
— Thermal choking (combustor exit Mach = 1)
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Figure 2: Trim AOA and Elevator Deflection: Level Flight, Unsteady-Viscous Flow, 2 Control Flexible Vehicle

e Both AOA and elevator deflection decreases monotonically with increasing Mach, and
increases monotonically with increasing altitude

e Left endpoints: thermal choking
e Right endpoints:

—q = 2000 psf for 70-104 kit
— FER = 1 for 104-115 kft



Trim Analysi
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Figure 3: Trim FER and Flexing Deflection Angles: Level Flight, Unsteady-Viscous Flow, 2 Control Flexible Vehicle

e F'ER increases monotonically with TMach and Taltitude.

e Fore/aft deflection angle is always negative/positive, and relatively constant
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DYNAMIC ANALYSIS: LINEAR
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Figure 4: Right Half Plane Pole: Level Flight, 2 Control Flexible Vehicle

e RHP pole fairly constant along constant dynamic pressure profiles;
— increases with increasing dynamic pressure (greater BW for stabilization)
e RHP pole increases linearly with increasing mach

e RHP pole decreases monotonically with increasing altitude
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Figure 5: Right Half Plane Zero: Level Flight, 2 Control Flexible Vehicle

e RHP zero decreases with decreases dynamic pressure

e RHP zero increases linearly with increasing mach

e RHP zero decreases monotonically with increasing altitude
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DYNAMIC ANALYSIS: FREQUENCY RESPONSE
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Figure 6: Plant Bode Magnitude Response, Mach 8, 85 kft: Level Flight, 2 Control Flexible Vehicle
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DYNAMIC ANALYSIS: LQR SERVO METHODOLOGY



LQR Servo Meth
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Figure 8: LQ Servo: Adapting LQR Control Law For Reference Command Following

iy = Apy + Bpu y = Cpmy (1)
e y=[v~]T is the output vector
e u=[FERG,]" is the control vector
e z,=[y" 2l |T =]vyaq]’ is the plant state vector
ez, =[aq|’=[01x2 Iaxs]z, = Crx, denotes the rest of the states in x, (i.e. states in z, excluding those in y)
The sensitivities are defined as follows:
Sensitivity @ output (r — e): S, = [I + L] " Sensitivity @ input (d; — w,): S; = [I + L] ™"

Comp. sensitivity @ output (r — y): T, = L, [I + LO]_l Comp. sensitivity @ input (d; — u): T; = [I + Li]_l

Open loop @ output (e — y): L, = PK Open loop @ input (u, — u): L; = KP

Input disturbance to output: S,P = [[ + L,]' P Reference to control :KS, = K [I + L]~



DYNAMIC ANALYSIS:
CLOSED LOOP SENSITIVITY STUDIES
(Using only . on FPA)
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Figure 9: LQR Closed Loop Sensitivity (Mach 8, 85 kft)

e Min BW @ controls 7T}, w, = 6.28 (~ 2 times the unstable pole)to get < 10 dB peak in 5,
— Attempts to decrease BW @ the input yields peaking in S, before S;

e Min BW @ error S, ~ 0 given large enough BW @ T;

e Max BW @ error S,, w, = 1.47 < RHP Zero = 8.5

— Limited by the RHP Zero and low frequency flexible modes (~ 20%)
— wy, limited by the simplicity of K, (PI like structure)

— Adding FER as an input will allow for an increase in w, beyond 1.47 (not shown)

10 10



Sensitivity Magnitude Respon
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Figure 10: LQR Closed Loop KS,, S,P Sensitivity (Mach 8, 85 kft)

e Controls can grow unrealistically large before maximum BW issues are seen

e Minimum BW dictated by 10 dB response in S,P (input disturbance to plant output)




Sensitivity Magnitude Respon
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Figure 11: LQR Closed Loop Frequency Response, Complementary Sensitivity (Mach 8, 85 kft)

e Min BW @ controls 7T}, w, = 6.28 (~ 2 times the unstable pole)to get < 10 dB peak in 5,
— Attempts to decrease BW @ the input yields peaking in 7}, before T;



Sensitivity Magnitude Respon

Open Loop Frequency Response: Error Signal

Open Loop Frequency Response: Plant Input
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Figure 12: LQR Closed Loop Frequency Response, Open Loop (Mach 8, 85 kft)

e Min BW @ controls L;, w, = 5.98
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Figure 13: LQR Closed Loop Time Response, Flight Path Angle Command (Mach 8, 85 kft)

e Slowest BW design settles in 360 seconds (not shown)
e Fastest BW design begins to excite flexible modes as seen in the control response

e Fastest BW design settles in 2.15 seconds



DYNAMIC ANALYSIS:
CLOSED LOOP LQR
TWO INPUT, TWO OUTPUT (TITO)
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Figure 14: LQR Closed Loop Time Response, Velocity Command (Mach 8, 85 kft)

e Output and control response to velocity commands for the three designs (referred to as fast, nominal, slow)
e Control responses show equilibrium control + small signal control

e Thermal choking occurs at FER = 0.92 (for a turning angle equal to the trim turning angle)

e As the controller bandwidth increases, the transient values of the FER control increases

e Transient responses for the elevator are similar for all three designs
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Figure 15: LQR Closed Loop Time Response, Gamma Command (Mach 8, 85 kft)

e Output and control response to flight path angle commands for the three designs
e For the slow and nominal designs, the elevator deflection transient increases while the FER transient remains small

e As the controller bandwidth is further increased, a noticeable jump in the FER transient is observed



Singular Value Response (
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Figure 16: LQR Frequency Response, Sensitivity at Error Signal (Mach 8, 85 kft)

e Sensitivity at the input and output

e The maximum sensitivity is located at 1 rad/s and has a value of 2.5 dB for fast design, and 0.5 dB for the slow design



Singular Value Response (
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Figure 17: LQR Frequency Response, Sensitivity at Error Signal (Mach 8, 85 kft)

e Complentary sensitivity at the input and output

e The maximum sensitivity at the input is located at 1 rad/s and has a value of 5.98 dB for all 3 designs design



Singular Value Response (
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Figure 18: LQR Frequency Response, Control Sensitivity and Input Disturbance to Output (Mach 8, 85 kft)

e Control sensitivity and input disturbance to output properties for the closed loop response
e Control sensitivity values increase with increasing controller bandwidth

e Input disturbance rejection properties improve as controller bandwidth is increased



NONLINEAR ISSUES: FER MARGIN
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Figure 19: FER for Trim and Thermal Choking: Level Flight, Unsteady-Viscous Flow, 2 Control Flexible Vehicle

Thermal Choking FER Margin
FERMpc = Thermal Choking FER — Trim FER

Thermal Choking FER almost independent of altitude (not shown) for the above Mach ranges.
Unity FER Margin

FERMypiry =1 —Trim FER

FERMypc decreases with decreasing Mach, increasing flow turn angle, decreasing altitude

o ['ERMi i, decreases with increasing mach & altitude

FER Margin = min(FERMrc, FERMyny,)

(%)mm at Mach 6.6, 100 kft, but results in FER Margin = 0!!!



NONLINEAR SIMULATIONS:
GENERALIZED PREDICTIVE CONTROL
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Figure 20: Nonlinear and Lin-Sat Responses to 3°, 6° FPA Commands - No Constraint Enforcement
e Nonlinear and lin-sat responses

e No constraint enforcement is included

e For the large FPA commands, the lin-sat responses go unstable while the nonlinear responses do not go unstable.
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Figure 21: Nonlinear and Lin-Sat Responses to 3°, 6° FPA Commands - With Constraint Enforcement

8, (deg)

e Nonlinear and lin-sat responses
e Constraint enforcement included

e Lin-sat response no longer unstable
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Figure 22: Nonlinear and Lin-Sat Responses to 2000, 4000 ft/s Velocity Commands - With Constraint Enforcement

e Nonlinear and lin-sat responses
e Constraint enforcement included

e FER is observed to hit and stay at the rails - resulting in maximum acceleration.



Summary and Conc

Trim (Static) Properties
e Trimmable Region: ~Mach 5-12, 70-115 kft

e Show importance of FER Margin and how it depends on mach, altitude, flow turning angle (AOA+forebody deflection).

FERMrpc decreases with decreasing Mach, increasing altitude, increasing FTA (AOA-+forebody deflection).
FERM, i1, decreases with increasing Mach, increasing altitude (independent FTA).

Dynamic Properties

e More unstable at lower altitudes and higher Machs

e Instability (and poles) invariant along constant dynamic pressure profiles
Control Design Tradeoffs (LQR)

e While state feedback can be used to eliminate minimum BW constraint at error, acceptable command following and
disturbance attenuation requirements require a minimum BW (at error); also, still require minimum BW at controls

e FPA BW limited by RHP zero (inverse response) effects and flexible dynamics

— Elevator+FER allows for decrease in FPA settling time by 3% (5.15 sec to 5.0 sec)
— Elevator+canard (no FER) allows for 23% decrease (5.15 sec to 3.97 sec)...but canard may burn off!

e F'PA robustness with respect to uncertainty in flexibility

— Elevator alone allows for 11.2% decrease in flexility (EI) before instability
— Elevator+FER allows for 17.1% decrease in flexibility (52% improvement)
— Elevator+FER+canard allows for 19.5% decrease of flexibility

Nonlinear Issues
e FER Margin limits controller BW and/or reference command magnitudes (mainly velocity; FPA to much lesser extant)
e Elevator saturation can induce instability for large controller BW /reference FPA command magnitudes

— constraint enforcement methodologies needed to ensure stability and best possible tracking



