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Motivation: High Cycle Fatigue Analysis

• Fatigue life estimates require long-time stress/strain histories
• Analysis methods must be capable of handling complex 

structures under combined high-intensity thermal and acoustic 
environments
– Large deflection nonlinear response
– Composite material properties

S ti ll d t ll li t d l di– Spatially and temporally complicated loadings
• Computationally efficient methods are required
• Reduced order modeling is one approachg pp

Representative problem of interestRepresentative problem of interest
58 x 25 in. multi-bay panel with stiffeners
Mixed element model
A i t l 16 000 d (96 000 D F )
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Approximately 16,000 nodes  (96,000 DoFs)



Objective

Prior work has shown that careful selection of normal modes 
as the basis functions for reduced order models results in 
accurate approximations  

Development of a robust modal basis selection criterion for 
reduced order nonlinear simulation of random response is in 
progress

• Proper  Orthogonal Decomposition (POD) 
accuracy

• Modal Assurance Criteria (MAC)

applicability to a wide range of
loading conditions
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Outline

Nonlinear Reduced Order Formulation

Modal Basis Selection Procedure

Numerical Results

Concluding Remarks
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Nonlinear Reduced Order Formulation

Semi-discrete equations of motion in physical DoF (nDoF)
(t)(t)(t))((t)(t) FXXKXCXM =++

(t))( XFNL nonlinear restoring force

Modal transformation

(t))( XFNL nonlinear restoring force

Φ = matrix of basis functions

Equation of motion in reduced-order DoF (L << nDoF)

(t)(t) qX Φ= Φ = matrix of basis functions
q(t) = modal coordinates

Equation of motion in reduced order DoF (L  nDoF)

(t)(t))q,(t),q(t),(q(t)(t) L21 FFqCqM NL
~~~~ =++ …

where modal quantities are

[ ] [ ] FFFFCCIMM NLNL
TTTT 2 ΦΦΦΦΦΦ ====== ~~~~ ζω
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[ ] [ ] FFFFCCIMM NLNL2 ΦΦΦΦΦΦ ζω



Nonlinear Reduced Order Formulation

FFqCqM NL
~~~~ =++

For each component of nonlinear restoring modal force vector

… qqqbqqaqd)q,,q,(qF kj

L L L
r
jkkj

L L
r
jkj

L
r
jL21

r
NL ∑∑∑∑∑∑ ++=~ qqqqqq)qq(q kj

1j 1k 1
jkkj

1j 1k
jkj

1j
jL21NL ∑∑∑∑∑∑

= = == ==

linear quadratic cubic

• Construct  a sufficient number of static displacement 
fields qXq Φ=→

• Obtain restoring forces via static nonlinear  FE solution

NL
T

NLNL FFFFXXK Φ=→→= ~)(
• Solve algebraic system of equations for coefficients 

L,1,k,j, ,bL,1,kj, ,aL,1,j ,d r
jk

r
jk

r
j ……… ===
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“Work” to Obtain Reduced Nonlinear System
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Modal Basis Selection Procedure

(t)(t))q,(t),q(t),(q(t)(t) L21 FFqCqM NL
~~~~ =++ …

Perform system identification to characterize

(t)(t) qX Φ= How is Φ selected?

Perform system identification to characterize
nonlinear dynamic response for a particular load case

• Proper Orthogonal Decomposition (POD)
Proper Orthogonal Modes (POM) 

Determine most significant proper orthogonal 
modes (POM)modes (POM) 

• Cumulative POM Participation

Select normal modes that best represent properSelect normal modes that best represent proper 
orthogonal modes – normal modes are independent of 
loads

M d l A C it i (MAC)

8

• Modal Assurance Criteria (MAC)



System Identification to Characterize 
Nonlinear Response

Proper Orthogonal Decomposition
Obtain sample of full-order nonlinear response in physical 
DoF for some tn << tf

[ ] [ ]
Form correlation matrix [R]

[ ] [ ])(t)(t)(t)(tX n321nDoFn XXXX …=×

[ ]

[ ] [ ] [ ]XX
n
1R T

nDoFnDoF =×

Perform eigen-analysis of correlation matrix [R]

n

[ ]{ } { } { } { } { }[ ][ ] [ ]{ } { }0pI-R ii =λ { } { } { }[ ]nDoF21 ppp
POV’s Proper Orthogonal Modes

[ ]λ

9

POV s Proper Orthogonal Modes
(POM’s)



Selection of Most Significant Proper 
Orthogonal Modes

Determine proper orthogonal mode participation –Determine proper orthogonal mode participation 
normalized POV’s

nDoF1ii ==
λχ nDoF,1,inDoF

1j
j

i …==

∑
=

λ
χ

Specify desired level of cumulative POM participation
M

1j=

1

0 1 #
M

i
i

M of selected POVsυ χ υ
=

= < ≤ =∑

Th b f l t d POM’ M i
where

The number of selected POM’s, M, is 
determined by user specification of υ
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Selection of Modal Basis Functions for 
Reduced Order Analysis

Find normal modes that best represent  proper 
orthogonal modes

Perform normal modes analysis of undamped linear 
t

orthogonal modes 

system [ ]{ } { }
[ ] { } { } { }[ ]

i
2

i

Φ

nDoF,1,i0MωK

φφφω

φ …==−

][ 2

Form modal assurance criterion (MAC) matrix for basis 
l ti 2

[ ] { } { } { }[ ]nDoF21nDoFnDOFΦ φφφω =×][

selection

{ } { }
{ } { }

{ } { }( ){ } { }( ) nDoF1
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TT
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Numerical Example
Clamped Aluminum Beam

Transverse Displacement

p(t)y

152 dBm
)

p
Post-buckled Random Response 
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Numerical Example
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POM Selection using Cumulative Participation

POD Results for 35°F and 170 dB

υ=99.90 %, 14 modes (5T + 9I)

υ=99.99 %, 17 modes (7T + 10I)

υ=99.00 %,  9  modes (3T + 6I)

υ=90.00 %,  5  modes (2T + 3I)
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Response at Quarter-span Location for 
POD Load Case (35°F and 170 dB)

In-Plane ResponseTransverse Response
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Reduced order analysis accurately captures nonlinear response
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Reduced order analysis accurately captures nonlinear response



Computational Efficiency of POD/MAC 
Modal Basis Selection Procedure

Reduced order simulation cost
- System reduction

Metric: Number of static nonlinear cases
24 d 2 92424 modes → 2,924
17 modes → 1,139
═► 61% reduction► 61% reduction

- Reduced system integration
Metric: Runge-Kutta 4th order scheme FLOPS/time step

24 modes → ~126k
17 modes →  ~45k
═► 64 % reduction═► 64 % reduction

Milestone metric of 50% computational cost reduction achieved
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Milestone metric of 50% computational cost reduction achieved.



Robustness Study

p(t)y Apply reduced order analysis 
to alternate acoustic load level 

152 dBΔT
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Robustness Study:
Nonlinear Response at a Reduced Thermal-
Acoustic Loading Level (35°F and 158 dB)g ( )

Reduced order analysis derived from 35°F and 170 dB 
loading level

Quarter-span location, transverse response
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Robustness Study:
Nonlinear Response at a Reduced Acoustic 

Loading Level (35°F and 158 dB)

Reduced order analysis derived from 35°F and 170 dB loading level

g ( )

Convergence of the error at the quarter-span location
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Summary

Modal basis selection approach using POD/MAC developedModal basis selection approach using POD/MAC developed 
and successfully applied 

- Error quantified as function of frequency and as a single 
cumulative metric

- Relationship between cumulative error and computational 
effort determined
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Future Work

Improved analysis: Efficient handling of loads typical to a full p y g yp
mission profile of a hypersonic vehicle

ΔT(x, y, z, t)y ΔT(x, y, z, t)
Application of POD/MAC 

procedure to loadings with time 
varying temperature and random

z

varying temperature and random 
pressure spatial distribution

Verification and validation by
p(x(t), y(t), t) x

Verification and validation by 
comparison with

- Full order finite element results 
- Experimental data
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Backup Charts
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Reduced Order Model Basis Selection

MAC Results for 35°F and 170 dB

MAC
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l M
od

e 
N

0.61 – 0.70

0.51 – 0.60N
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m
al up to ~ 4000 Hz
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Reduced Order Model Basis Selection

MAC Results for 35°F and 170 dB

MAC

um
be

r 0.91 – 1.00

0.81 – 0.90
~ 5 – 70 kHz

l M
od

e 
N

0.71 – 0.80

N
or

m
al 0.61 – 0.70

0.51 – 0.60

up to ~ 4000 Hz

24

Transverse POM Index In-plane POM Index



Robustness Study:
Nonlinear Response at a Reduced Acoustic 

Loading Level (35°F and 158 dB)g ( )

Reduced order analysis derived from 35°F and 170 dB loading level

Error measureIn-plane response 
at quarter-span location
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Robustness Study:
Nonlinear Response at a Reduced Acoustic 

Loading Level (35°F and 158 dB)

Reduced order analysis derived from 35°F and 170 dB loading level

g ( )

Error measureIn-plane response 
at quarter-span location
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Robustness Study:
Nonlinear Response at a Reduced Acoustic 

Loading Level (35°F and 158 dB)

Reduced order analysis derived from 35°F and 170 dB loading level

g ( )

Error measureIn-plane response 
at quarter-span location
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Robustness Study:
Nonlinear Response at a Reduced Acoustic 

Loading Level (35°F and 158 dB)

Reduced order analysis derived from 35°F and 170 dB loading level
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Robustness Study:
Nonlinear Response at a Reduced Acoustic 

Loading Level (35°F and 158 dB)

Reduced order analysis derived from 35°F and 170 dB loading level

g ( )

Error measureIn-plane response 
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Robustness Study 2:
Response to a Low Level Acoustic Loading 

(32°F and 128 dB)( )

Reduced order analysis derived from 35°F and 170 dB 
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Robustness Study 3:
Dynamic Thermal Buckling

(35°F)( )

Reduced order analysis derived from 35°F and 170 dB 
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Study Case – Aluminum Shallow Arch
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Reduced Order Analysis (114.3 N/m)

Mid-span location
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Robustness Study 4:
Nonlinear Response at a Reduced 

Distributed Loading Level (40.35 N/m)g ( )

Reduced order analysis derived from 114.3 N/m loading 
level
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Generalization to 
Large 2D and 3D Structures
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NRA Year 2 Explorations

Apply POD/MAC procedure to loadings with time varying 
temperature and random pressure spatial distribution
- Reduced order analysis derived from 19.4 °C/ 170 dB loading level
- Temperature profile 0→19.4→0 °C/ 128 dB (const.)Temperature profile 0→19.4→0 C/ 128 dB (const.)
- Results at the quarter-span location
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NRA Year 2 Explorations

Apply POD/MAC procedure to loadings with time varying 
temperature and random pressure spatial distribution
- Reduced order analysis derived from 19.4 °C/ 170 dB loading level
- Temperature profile 0→19.4→0 °C/ 158 dB (const.)Temperature profile 0→19.4→0 C/ 158 dB (const.)
- Results at the quarter-span location
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NRA Year 3 Activities

Improved estimation of fatigue life utilizing non-zero mean 
stress damage accumulation models
Full hypersonic mission cycle analysis  - OR -
Sensitivity and optimizationSensitivity and optimization
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NRA Year 3 Explorations

Improved estimation of fatigue life utilizing non-zero mean 
stress damage accumulation models
Intermittent Snap-through (19.4 °C/ 158 dB)

RFD – Morrow TFS
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RFM RFD – Standard Walker
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