High Fidelity Modeling for Numerical

Simulations of Complex
Combustion/Propulsion Systems

Farhad Jaberi
Department of Mechanical Engineering
Michigan State University
East Lansing, Michigan

Paul Durbin and Tom Shih
Department of Aerospace Engineering
lowa State University
Ames, lowa

Acknowledgment:

Sponsored by NASA-Fundamental Aeronautics Program
NASA Collaborator: Dr. Philip Drummond

Computational Facilities: MSU-HPCC

MICHIGAN STATE

UNIVERSITY



Objectives:

 Develop high-fidelity numerical models for high speed turbulent
reacting flows

O Fundamental understanding of compressible turbulent reacting flows

4 Study NASA's supersonic combustion problems for various flow and
combustion parameters - Numerical experiments

O Long Term Goal: Integrated simulation of a “laboratory” high speed
propulsion system — A virtual scramjet

Approach:

O A high-order, multi-block Eulerian-Lagrangian-Lagrangian LES/FMDF
methodology is available for simulations of two-phase subsonic
turbulent reacting flows in complex configurations

O LES/FMDEF is being improved, extended and applied to high speed
(supersonic and hypersonic) single-phase turbulent reacting flows

 DNS and experimental data is used for validation and improvement of
LES/FMDF submodels



Large Eddy Simulations of Turbulent
Reacting Flows
A Hybrid Eulerian-Lagrangian Methodology

/Filtered continuity and momentum \
equations via a generalized multi-block

high-order finite difference Eulerian
Gasdynamics Field |l scheme for high speed turbulent flows in

complex geometries

\_Compressible subgrid closures %

Scalar Field Filtered Mass Density Function (FMDF)

(mass fractions equation via Lagrangifsu_'\ Monte Carlo

and temperature) method — Compressibility effects are
added

/Kinetics: (1) reduced kinetics schemes N
with direct ODE solvers, and (11) reaction
Chemistry D> library with detailed mechanisms or
complex reduced schemes
Fuels: methane, propane, decane, JP-10
\_kerosene, heptane, hydrogen, ethanol  /




LES/FMDF of Turbulent Reacting Flows
A Hybrid Eulerian-Lagrangian Methodology
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LES/FMDF of Turbulent Reacting Flows

Scalar EMDE Lagrangian Component
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LES/FMDF of Turbulent Reacting Flows

/ Subgrid-Scale Closures \

Subgrid Stresses in Momentum Eq. Ty = <p>| (<UiU,->L — <ui>L<uj>L)

L_

Subgrid Convection in FMDF Eq. : [<Ui ) <ui>|_]PL =y, 5(PL8/<,0>,)
X.

Subgrid Mixing in FMDF Eq. (LMSE/IEM model) :
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LES of Turbulent Reacting Flows

Velocity-Scalar FMDF
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Main Features of LES/FMDF

O Large scale, unsteady, non-universal, geometry-
depended quantities are explicitly computed in LES/FMDF

d LES/FMDF is applicable to 3D simulations of high speed
reacting flows in complex geometries

d FMDF accounts for the effects of chemical reactions in
an exact manner and may be used for various types of
chemical reactions (slow, fast, endothermic, exothermic,
etc.)

d FMDF contains high order information on subgrid or
small scale fluctuations

d The Lagrangian Monte Carlo solution of the FMDF is free
of artificial (diffusion) numerical errors



Application of LES/FMDF to Subsonic Flows
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Validation of LES Models and
Numerical Schemes

» Jet and bluff body flames

: : » Two-phase turbulent jet
Comparison with P J

experiment » Dump combustor

> Swirl-stabilized burner

» Turbulent mixing layer

Comparison With g | > Planar turbulent Jet

DNS » Homogeneous turbulent flow

_ > A generalized high-order
Comparison finite difference vs. finite
between different I | \,olume and spectral schemes

LES methods »Consistency of Eulerian and

Lagrangian fields




A Hybrid Eulerian-Lagrangian Numerical Method
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LES/FMDF of Dump Combustors

consistency between Eulerian and Lagrangian components

Monte Carlo

“Mean” Temperature
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LES/FMDF of Double Swirl Spray Burner
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LES/FMDF of Axisymmetric

Dump Combustor (couldet ar. 1994)
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Extension and Application of
LES/FMDF to High Speed Flows

O Inits present form, LES/FMDF is a robust and efficient methodology for
single- and two-phase subsonic turbulent reacting flows in complex geometries

O Large-scale compressibility effects are explicitly calculated

[ Robust high-order Eulerian finite difference methods (e.g. WENO, MP,
Compact+MP) for LES of high speed turbulent flows have been developed

O Work is in progress to develop improved subgrid and wall (e.g. DES) models
for supersonic and hypersonic flows

O Subgrid compressibility effects are being added to existent scalar FMDF
model

J PDF-based subgrid compressible velocity-scalar FMDF models are being
developed for supersonic flows

 Close collaborations with NASA scientists and other university investigators-
continuously including their inputs into our work (flow configurations,
experimental data, chemistry models,.......... )



Application of LES to High Speed Flows

Numerical Methods

1) High-order Compact-RK scheme + Filtering and/or local upwind
limiters (Rizzetta et al. 2001) — 3D code is developed and tested

2) High-order WENO-RK scheme (Shi et al. 2003)- 3D code is
developed and tested

3) High-order Monotonicity Preserving (MP)-RK scheme (Huynh
2007) - 2D code is developed and tested, 3D code is developed)

Test Problems

1) 1D Problems: Advection (Wave), Burgers, Lax, Shock Tube, (1D
calculations with 3D codes)

2) 2D Problems: Rayleigh-Taylor Instability, Double Mach Reflection,
Isotropic Turbulence (2D calculations with 3D codes)

3) Converging-Diverging Nozzle — 3D LES calculations
4) Supersonic Channel Flow — 3D DNS and LES calculations

5) Supersonic Boundary Layer and Compression Ramp — 3D LES
calculations

6) Co-Annular Reacting Supersonic Jet — 3D LES calculations



Application of LES to High Speed Flows
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High-Order Numerical Methods for LES
of Supersonic Turbulent Flows

Solutions of
1D Advection
Equation
after 10
Periods with
Compact, 3d
order ENO,
5th order
WENO, and
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Schemes
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High-Order Numerical Methods for LES
of Supersonic Turbulent Flows
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High-Order Numerical Methods for LES
of Supersonic Turbulent Flows

Solutions of
1D Shock Tube
Problem with
5th order
WENO, and 5t
order MP
Schemes
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High-Order Numerical Methods for LES
of Supersonic Turbulent Flows
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Supersonic Combustion - Free Jet Experimental
Configurations (Laboratory and Full-Scale Models)
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Supersonic Combustion Free Jet Experimental

Configurations
Case 1: Mixing Case 2: Combustion
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Ongoing and Near-Future Research

O In its present form, LES/FMDF is a robust and efficient methodology for
single- and two-phase subsonic turbulent reacting flows in complex geometries

L Large-scale compressibility effects are explicitly calculated

O Robust high-order Eulerian finite difference methods (e.g. WENO, MP,
Compact+MP) for LES of high speed turbulent flows have been developed

O Work is in progress to develop improved subgrid and wall (e.g. DES) models
for supersonic and hypersonic flows

O Subgrid compressibility effects are being added to existent scalar FMDF
model

O PDF-based subgrid compressible velocity-scalar stochastic models are being
developed for supersonic flows

O Close collaborations with NASA scientists and other university investigators;
continuously including their inputs into our work (flow configurations,
experimental data, chemistry models,.......... )
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