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Structurally Integrated TPS -

 

Definition and Motivation

insulation

Motivation
• Higher efficiency, lower maintenance
• Outer surface is robust structure
• Thermally integrated

Definition
Structural wall that carries airframe loads and maintains
inner surface below acceptable maximum temperature (Insulated wall) 

Heating

Challenges
• Thermally induced stress due to CTE mismatch between various structural components
• Trade between structural and thermal performance
• Limited material selection
• Fabrication, scaling to large structures 
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Preliminary Prototype Structurally Integrated TPS 
Concepts

Three concepts
•

 

Thermally Integrated Structural Sandwich 
Core (TISSC) –

 

NASA concept

•

 

Structurally Integrated TPS

 

(SITPS) –

 
NASA concept-

 

manufactured by COI 
Ceramics Inc

•

 

Integrated Composite Structure TPS 
(ICSTPS) -

 

developed by S. Miller & 
Associates Research Foundation 
(SMARF) under Hypersonic NRA

Clarifications
•

 

These are prototype concepts used for preliminary thermal–structural evaluation. 
•

 

None have been sized for a specific mission.  Areal densities provided are for the prototypes, 
and should not be used for direct comparison of concepts

•

 

The preliminary thermal-structural test data will be used for evaluation of concepts, model 
validation and optimization, leading to specific designs for specific missions.
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Thermally Integrated Structural Sandwich Core (TISSC)

Features
Tailorable structural core (manufactured from titanium)

Biaxial shear & through-thickness stiffness
Volume for insulation (use efficient, non-load bearing insulation)
Cutouts, thicknesses, and number of reinforcements can be optimized

Areal density*:  panel with  96 kg/m3 (6 lb/ft3) insulation:   26.1 kg/m2 (5.4 lb/ft2)

* Typical

 

areal density of combined TPS and structure on lifting bodies is

 

~ 4 –

 

6 Ib/ft2

*

 

Areal densities are for preliminary prototypes without sizing for a specific mission; can not 
do direct comparison of areal densities of three prototype concepts
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Structurally Integrated TPS (SITPS)

• Rigid insulation bars wrapped with impregnated ceramic-fiber cloth
• Wrapped bars are stacked in a 0⁰/ 90⁰

 

configuration
• Layers of impregnated ceramic-fiber cloth stacked on top; co-cured and trimmed
• PMC bottom face sheet is bonded to panel
• Areal density = 28.7 kg/m2

 

(5.9 lb/ft2) 

Features
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Integrated Composite Structure TPS (ICSTPS)

Honeycomb Filled With Chopped OFI

Features
Honeycomb panel and facesheets fabricated from thin ceramic foils 
Extending application to CMC honeycomb, and CMC/PMC facesheets
Honeycomb filled with non-load bearing OFI (Opacified Fibrous Insulation)
Areal density* = 10.1 kg/m2 (2.1 lb/ft2) for ceramic honeycomb/facesheet with OFI
ISCTPS could also be used as

Rigid insulation in Structurally Integrated TPS (SITPS) concept
Outer layer of a combined TPS (blanket insulation on backside) 
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Planned Tests for the Structurally Integrated TPS Concepts 

Thermal Tests: for validation of thermal models
•

 

Steady state 
•

 

Transient
•

 

Thermal property data

Structural Tests:

 

coupon testing at room & elevated 
temperatures
•

 

Compression
•

 

Shear
•

 

Flat-wise tension
•

 

Three point bend

Validated thermal-structural model of concepts will be used for 
optimization
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Insulation Requirement for Hypersonic Vehicles

TPS for long-duration hypersonic flight (including the structurally 
integrated TPS concepts) requires highly efficient insulation to

 
withstand the high integrated heat loads

Non-rigid, non-load bearing fibrous insulation is the most efficient 
insulation

Present effort concentrates on thermal characterization (theoretical 
modeling and validation testing) of non-load bearing fibrous 
insulations for structurally integrated TPS
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Candidate Non-Load Bearing Fibrous Insulations

Silica (Q-fiber)
•

 

Density:

 

64-96 kg/m3

 

(4–6 lb/ft3)
•

 

Max Temp:   1370 K (2000°F)
•

 

Used in AFRSI blankets on the Shuttle leeward side

Alumina (Saffil, Alumina Paper [APA])
•

 

Density: 24-144 kg/m3

 

(1.5–9 lb/ft3)
•

 

Max Temp:  1760 K (2700°F)

Zirconia (ZYF)
•

 

Density:

 

267-288 kg/m3

 

(15–18 lb/ft3)
•

 

Max Temp:

 

2200 K (3500°F)
•

 

Yttria stabilized zirconia

OFI (Opacified Fibrous Insulation)
•

 

Density:

 

96–288 kg/m3

 

(6–18 lb/ft3)
•

 

Max Temp: ~1640 K (2500°F)
•

 

Mixture of opacifier in fibrous insulation mat (silica or alumina); 
opacifier significantly reduces radiation component of heat transfer

•

 

Developed by S. Miller & Associates Research Foundation (SMARF)

Q-fiber AFRSI Blanket

APA

Zirconia

OFI

http://www.zircarceramics.com/pages/flexible/specs/apa.htm
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Thermal Characterization of Insulations

Heat transfer in fibrous insulations: combined radiation/conduction (gas and solid

Traditional method (used for Space Shuttle) 
•

 

Measure thermal conductivity as a function of T and P, Measure cP

 

(T);   use tabulated 
values in analysis and sizing

•

 

Shortcomings:
–

 

Measured values lump contribution of various modes, without any physics 
insight

–

 

Measured values only apply to the specific insulation composition (density, fiber 
diameter size), new set of data need to be generated for different composition 

New method
•

 

Use physics-based model to model heat transfer in high porosity fibrous insulations, 
validate model with steady-state experimental results: k = k (T, P, ρ). 

•

 

Advantages:
–

 

Applicable to any insulation composition (density, fiber diameter, etc)
–

 

Provides insight into contributions of various modes of heat transfer, can be 
used to optimize insulation stack-up

rcrgs kkkkkk +=++= ks

 

solid conduction
kg

 

gas conduction
kc

 

conduction (gas and solid)
kr

 

radiation
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Generic Flight Profiles

Generic surface temperature and pressure profiles

•

 

Significant portion of flight, especially the peak heating portion, is at pressures 
below 1 torr

Lifting Body Reentry Hypersonic Flight
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Heat Transfer in Insulations

Spatial (through-thickness) variation of ratio of radiation and conduction 
(gas and solid) heat fluxes to total heat flux 

•

 

At very low P: radiation dominant mode of heat transfer; conduction close to 
cold wall is solid conduction

•

 

Radiation is dominant close to hot wall, its relative magnitude ↓

 

with 
increasing P

•

 

As P ↑

 

gas conduction increases, and spatial location where conduction

 
exceeds radiation moves from cold wall to mid-plane

•

 

Sustained portion of hypersonic flight is at  P ≤

 

1 torr –

 

radiation dominant in 
the top 80% portion of the insulation

Alumina (Saffil), ρ

 

= 48 kg/m3

 

, L = 39.9 mm. TH

 

= 1300 K, TC

 

= 300 K
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Theoretical Model-

 

Radiation & Solid Conduction

Radiation: for optically thick insulation, radiation can be 
modeled as diffusion

•

 

Modeling is based on pioneering work of Lee & 
Cunnington  (1986-

 

2000). Radiative model  
accounts  for 2-D scattering in fiber matrix, uses 
deterministic parameters that define composition 
and morphology of medium 

–

 

Fiber size distribution, orientation, volume fraction
–

 

Spectral complex refractive index of fibers
•

 

Radiative conductivity from modified Rosseland 
absorption coefficient

Solid conduction: empirical model based on

 

density and 
k of bulk material

•

 

Fs

 

factor relating micro-scale geometric effects of fiber 
matrix and bulk dimensions.  Obtained from steady state 
measurements in vacuum and at cryogenic temperatures

λσ λ

λ
d

TdI
TdITnk
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I

 

radiant intensity
n

 

index of refraction
ρ

 

density of fibrous insulation
σ

 

Stefan-Boltzmann constant
λ

 

wavelength
Γλ

 

modified absorption coefficient

)()( TbulksksFTsk −⋅⋅= ρ

SEM of bonded fibers
Magnification =1200X
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Theoretical Model-
 

Gas Conduction

Gas conduction: kg = f (T, P, λ, LC ): 

•

 

Gas mean free path

•

 

Empirical Pore size (characteristic length) 
–

 

θ

 

= 0.524;  fibers randomly oriented in space 

Contributions of various modes of heat transfer 
are then combined to yield thermal conductivity
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thermal conductivity of gas in free space

 

α

 

thermal accommodation coefficient
k  Boltzmann constant ρ

 

felt density 
Df

 

fiber felt diameter

 

ρ0

 

bulk density
dm

 

gas collision diameter

 

κ

 

ratio of specific heats: cP

 

/cv
Pr

 

Prandtl number

SEM of bonded fibers
Magnification =1200X

rgs kkkk ++=



1616

Measurements
•

 

TH

 

average hot side temperature
•

 

TC

 

average cold side temperature
•

 

q″

 

average cold side heat flux (thin film heat flux gages)

Calculation

Relation between analytical keff

 

& k

Strategy
•

 

Model k(T, P, ρ), calculate keff

 

,

 

compare to measured keff,exp

Steady State Test Apparatus

Steady-state thermal test apparatus at NASA LaRC
•

 

Apparatus is based on ASTM C201
•

 

Measures effective

 

thermal conductivity with 
–

 

Large temperature differences maintained across sample thickness: cold side at room 
temperature, hot side up to 1370K

 

(2000°F); being extended to 1920K (3000°F)
–

 

Pressure range of 0.001 to 760 torr
–

 

Sample size: 30.5 ×

 

30.5 ×

 

2.5 cm (12 ×

 

12 ×

 

1 in)

CH
eff TT

qLk
−
′′⋅

=exp,

Septum plate
Heater

L
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TH
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Comparison of Results –Silica 

Differences (exp. data & model prediction):

 

1 –

 

4% for 700 ≤

 

TH

 

≤

 

1360 K; 24% at 533 K
Experimental Uncertainties:

 

1 –

 

6% for 700 ≤

 

TH

 

≤

 

1360 K; 29% at 533 K
Rms deviation

 

at 0.001 torr:

 

2.5%    for 700 ≤

 

TH

 

≤

 

1360 K                     
9.4%    for 533 ≤

 

TH

 

≤

 

1360 
Higher experimental uncertainty at lower T at 0.001 torr due to low sensitivity of heat flux 
gages
Close agreement validates modeling of radiation and solid conduction

P = 0.001 torr
ρ

 

= 68.8 kg/m3
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Comparison of Results –Silica

Rms deviations between experimental data and model predictions:
•

 

2.5% at 0.001 torr

 

validates radiation and solid conduction modeling
•

 

2.2% at 0.1 torr                    
•

 

3.8% at 1 torr

 

validates gas conduction modeling
•

 

5.9% at 10 torr
•

 

3.8% at 750 torr
Overall rms deviations at all T & P: 5.1%  (close agreement)
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Comparison of Results –

 

Alumina and Zirconia

Modeling of radiation and solid conduction for Alumina and Zirconia insulations 
is validated
Rms deviations:  

•

 

8.1% for Alumina;  4.2% for Zirconia:

 

533 ≤

 

TH

 

≤

 

1360 
•

 

4.8% for Alumina; 2.7% for Zirconia: 700 ≤

 

TH

 

≤

 

1360
•

 

(2.5%  for Silica:

 

700 ≤

 

TH

 

≤

 

1360 K)

Excellent agreement between theoretical model and experimental data for heat 
transfer in Silica, Alumina, and Zirconia fibrous insulations

•

 

Given any fiber composition, thermal properties can be generated

 

as a function of T, P, ρ

Alumina, 107 kg/m3

Zirconia,  267 kg/m3

P = 0.001 torr
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Comparison of Results –
 

OFI

OFI significantly reduces the radiation component of heat transfer through 
insulation, has lowest keff

Modeling radiation contribution of opacifiers in fiber matrix is

 

not 
straightforward

•

 

Rms deviation for OFI: 15% 
•

 

Newer, more detailed experimental data to be used to improve modeling of OFI 
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Silica
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Concluding Remarks

Structurally Integrated TPS
•

 

Three preliminary concepts briefly discussed
•

 

Planned Tests
–

 

Perform steady state and transient thermal tests to validate numerical 
thermal models for various concepts

–

 

Generate necessary structural properties, and use validated thermal model 
for thermal-structural optimization of concepts 

Thermal Modeling of various fibrous insulations for use in structurally 
integrated TPS for Hypersonic vehicles

•

 

Developed physics-based heat transfer models for various fibrous 
insulations, which was validated with experimental data 

–

 

Excellent agreement for Silica, Alumina and Zirconia

 

fibrous insulations
–

 

Reasonable agreement for OFI. More experimental data and modeling 
refinement is required

•

 

Given any fiber composition (size distribution, orientation, volume fraction 
& complex refractive index), thermal properties can be generated

 

as a 
function of T, P, ρ

•

 

Verified performance of OFI as an effective non-rigid insulation for high 
temperature applications 
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