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Purpose of Talk

• Motivate uses for Computational Optimal Control (COC) in 
hypersonic flight systems

• Discuss challenges posed by the presence of control 
variables in COC problems

• Describe an approach for mitigating these challenges
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Structure of Talk

• What is COC?
• What, in principle, would we like to use it for?
• Why can’t we?

– Control variables aren’t the whole problem, but they certainly don’t 
help…

• Discrete “maximum principle” for control elimination
• An approach for forcing convex state rates
• Status of Project, and a summary of the importance of this 

work to hypersonics.
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What is Optimal Control?

Optimal control:

u*(τ), t≤τ≤tfinal such that Φ*≤Φ for all possible u(τ)

Control Variable  
u(τ)
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What is Computational Optimal Control?

• Set up discrete-time representation of system.
• Choose x0,x1,…,xN and u1,u2,…,uN to minimize Φ while 

satisfying the discretization expressions (the Fs) and boundary 
conditions (Ψ)
– Use a generic Nonlinear Programming (NLP) code for this

• As N increases, the “u” variables increase the problem’s 
degrees of freedom
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Optimal path 
computed for 

vehicle at red dot

For What, in Principle, Can COC Be Used?

Vehicle diverges from computed 
optimal path; new optimum path 

recomputed with same model
System model is corrected; 
optimal path recomputed

Vehicle follows 
corrected optimal path

Hypersonic Trajectory Control and Control-Related Analyses
• Optimality is important in hypersonics because there is

– little excess performance, i.e., the vehicle is difficult to close.
– complexity ⇒ Engineering intuition is only a weak guide

• Application: Feedback Control:
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For What, in Principle, Can COC Be Used?

• Another Application:  System Design
– The MDAO community uses COC by including system configuration 

parameters in the COC problem statement.
– Example:

• Minimize initial fuel load to achieve desired fuel reserve at target 
condition.

• Size of initial fuel load ideally determines tankage, OML, inert 
mass, etc.

– This is not trivial to do with any modelling fidelity in the current state 
of the art.

– Although this project is focussed on COC for hypersonic trajectory 
control, successful concepts and algorithms here may be useful for 
the Hypersonics MDAO effort.

Hypersonic Trajectory Control and Control-Related Analyses
• Optimality is important in hypersonics because there is

– little excess performance, i.e., the vehicle is difficult to close.
– complexity ⇒ Engineering intuition is only a weak guide
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Terrifyingly Naïve Assumptions (TNAs)

• The example applications from the previous slide assume

– The computations leading to the COC solution are 
reliable and timely.

– The COC formulation and solution algorithm can cope 
with realistically complicated models.
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Well, What About Our TNAs?

Caveats:
• COC is not “typically” tolerant of 

– Redundant control effectors
– Slow/fast dynamics, e.g. energy vs rigid body rotations

⇒ “Point mass” models are typical

trim analysis

L(µ,α)

T(φ)
D(α)

W
• COC is definitely not 

tolerant of chattering 
control

Chattering is not 
uncommon in continuous-
time optimal control 
problems, and arises from 
properties of the dynamical 
model
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Implications of TNA Failure

• For Feedback Control,
– Use of point mass dynamics may require pre-computation of trim 

models for “all possible” cases…
• At the very least, covering all of the possible aero-thermo-

elastic-propulsive combinations will be burdensome.
• This is very vulnerable to Murphy’s Law.

– In order to ensure convergence of control computations, all models 
would have to be examined and scrubbed to ensure that chattering 
won’t occur. 

• For System Design,
– Lack of clear, simple, link between “full” dynamics and point-mass 

model requires trim-oriented massaging of the model throughout 
the flight envelope at each iteration of the optimization process.

• Not good.  What can we do?
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Computational Optimal Control Without Controls

• Assume that each control is a known function of the state
– Controls can be computed via separate optimization for each given value of 

state – output of process is state rate in “F”.
– Trajectory optimization problem now only solves for states.

• This won’t work as drawn…

Instead of this
x

x x x
x

u u u

Try this
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• What is the “Big Picture?”
– The u(x) computation needs to know what “u” is going to be used for…

COC Without Controls, continued
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Trajectory goal 
knowledge

Trajectory goal 
knowledge
Trajectory 

“Big Picture”

This is better:

– In other words, what is the best state rate

for the “top-level” x-only trajectory optimization?

),( uxfx =
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• If you’re using an augmented Lagrangian code to solve the 
NLP problem (of course you are,) you have λ(t) as part of 
the optimization machinery.

Pontryagin’s Maximum Principle Provides the Clue

• In continuous-time optimal control, choose u* to maximize
),( uxfH Tλ=

where λ(t) is a sensitivity function associated with the 
system dynamics, Φ(xf), and Ψ(xf)

1x

2x

λ
*x

• Here’s what we have:
– Ellipse is set of all achievable state rates 

(hodograph) for the state at a given point in the 
trajectory

– Optimal xdot has largest projection onto λ−vector
– Optimal control value is any value of u that 

produces the optimal xdot.
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Several Observations

• This sounds very simple, but we can make it complicated (in a good 
way).

• The vector λ merely expresses what the top-level trajectory optimization 
process wants from u.
– The direction of λ indicates where the state rate should mostly point,
– The length of λ indicates how urgently the top-level optimization wants the 

state rate to point there.
• The vector λ can be thought of as more of a guideline than a command.
• The control can be computed to achieve any goal we desire, as long as

– The state trajectory is able to meet its constraints,
– The resulting u(x) is twice differentiable.

• The plant model inside the control optimizations can be different from 
that used in the top-level optimization
– It can be more detailed,
– It can be just plain different.
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• This opens the door to using 
the trajectory optimization for 
automated vehicle design with 
realistic dynamical effects 
included.

• These are straightforward 
exploitations of the “inner-
loop/outer-loop” architecture 
described in previous viewgraphs

Exploiting This Notion

• Put rigid-body dynamics into the 
Control Optimization Model (COM)
– trim the vehicle, 
– and appropriately adjust the 

hodograph.
• Put aero-thermo-elastic-propulsion 

dynamics into the COM,
– compute inner-loop controllers,
– then compute RMS response for 

assumed disturbances,
– then, compute RMS aero and thrust 

properties,
– and appropriately adjust the 

hodograph.

• Convexify the hodograph!

• This opens the door to more 
reliable computations for 
feedback control
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The Hodograph: Is There a Problem?

• Consider aircraft V,γ dynamics, 
controlled by T,L:

– They can occur because of funny OML contours (ALS program 
asymmetric booster had concave hodograph)

– They can occur because of glitches in tabular data
– They can occur because of parabolic drag polar (TAEM maneuvers)

• Third scenario is bad, too; but not as much of a problem as 
chattering.

– First λ scenario: convex hodograph 
region, unique optimal state rate…

– Second λ scenario: concave hodograph 
region, two separate optimal state rates

– Third λ scenario: singular hodograph 
region, many equivalent state rates

• The second, chattering control scenario is not uncommon for 
aerospace problems

γ

V
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Point-Wise Convexification Algorithm

• Take the convex combination of the two rates

• Look for another, subject to the constraint that

0, 10 ≤〉〈 rr
• If there’s a second f* of equal optimality such 

that
0, 10 <〉〈 rr

then average the two rates

• What if there’s only one optimum, but there’s 
another, different, rate that gives similar 
performance?

• Find an optimal rate f*

• This is only possible because
– We have the λ vector
– We are hiding our suboptimal shenanigans from the top-level optimization.
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Project Status

• The MADS trajectory optimization code has been 
completely rewritten to support
– Hierarchical optimization, e.g. local control optimization,
– High-fidelity differentiation,
– High-order (RK45) discretization, as an option.

• This came to roughly 3000 non-comment lines of 
FORTRAN95 code, with an additional 5000 lines of Matlab 
and FORTRAN95 test code.

• Point-wise hodograph convexification has been formulated 
in some detail and Matlab prototyping is underway.

• The details of a scheme for singularity compensation are 
being worked out.
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Impact of This Work on Hypersonics

• Computational Optimal Control (COC) is important to hypersonics because 
hypersonic vehicles are likely to be complex and performance-limited for the 
foreseeable future.

• This research has produced an apparently novel approach for enhancing the 
reliability of COC numerics.

• By converting the control variables to functions of the state at the interface 
between the plant dynamics and the state trajectory, we
– permit arbitrarily large and complicated computations inside the plant 

dynamics “blocks” at each instant along the COC trajectory.
– permit distorting the plant dynamics in an orderly way to make the optimal 

control numerics benign without distorting the relevant performance 
capability of the plant.

• This work enables optimal feedback guidance with onboard identification of 
detailed plant parameters, or reconfiguration after unexpected changes in the 
system.

• This work, when sufficiently mature, may provide an attractive leveraging 
opportunity for use by MDAO for automating optimal system design. 
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